blishin,
5 Qe

o Global Journal of Technology
- & Optimization

Survay on Job Scheduling, Load Balancing and Fault Tolerance
Techniques for Computational Grids

Jasma Balasangameshwara*

Balasangameshwara, Global J Technol Optim 2014, 6:1
http://dx.doi.org/10.4172/2229-8711.1000169

()

£ O,

A
77
R

Associate Professor, Department of Computer Science and Engineering, Atria Institute of Technology, Bangalore, Karnataka, India

Abstract

Computational grid is a network of loosely coupled, heterogeneous and geographically-dispersed computers
acting together to perform a large compute-intensive job. In this article, we focus on the existing approaches to
grid scheduling, load balancing and fault-tolerance problems. Although grid scheduling, load balancing and fault
tolerance are active research areas in grid computing, these areas have largely been and continue to be developed
independent of one another each focusing on different aspects of computing. Hence, in this survey, we hope to show
that robust applications that can provide efficient results can be designed by collectively considering these areas.
To this end, we first provide an introduction to the motivation, grid scheduling, load balancing and fault tolerance
concepts of grid computing and discuss the works that have provided significant contributions to each of these areas
since its inception until 2013. We discuss their advantages, disadvantages and analyze their suitability for usage in a
dynamic grid environment. We conclude that, while important advancements have been made in each of these areas
individually, high performance approaches that cumulatively consider these areas still remain to be explored. We also
discuss the research work that is missing and what we believe the community should be considering. To the best of
our knowledge, no such survey has been conducted in the literature up to now.

In a grid environment, the job arrival patterns are unpredictable
and the computing capabilities unbalanced and unreliable. The
computers in a specific grid site may become overloaded while that in
other grid sites may be under-loaded [2]. Thus, the heterogeneous and
the dynamic nature of the grid requires job scheduling, load balancing
and fault-tolerance in order to make the best usage of the performance
of the grid computers.

Keywords:

balancing

Computing grid; Fault-tolerant scheduling; Load

Introduction

Due to the evolution of science and engineering, problems in these
fields have become complicated. To resolve such problems, a prime
computing facility is a prerequisite.

In the mid-1990s, the term grid was coined to describe technologies Background

that would allow consumers to obtain computing power on demand.
A computing grid is an amalgamation of hardware and software
infrastructures from different locations that offer dependable, steady
and cost-effective access to high-end computational capabilities
[1]. They facilitate dynamic sharing, aggregation and selection of
geographically distributed, independent computers at run-time based
on their accessibility, performance and capability.

Job scheduling: Job Scheduling is defined as the process of making

Distributed computing is a network of computers, each
accomplishing a portion of an overall job to achieve a computational
result much quicker than a single computer.

Parallel computing is a form of computation in which many
calculations are carried out simultaneously, operating on the principle
that large problems can be divided into sub-problems and solved
concurrently. Grid computing can either be called as is distributed Figure 1: Grid Computing Reference Architecture.
form of parallel computing or parallel form of distributed computing.

As shown in Figure 1 [1], at the fabric layer, grids provide access

to different resource types such as compute, storage and network *Corresponding author: Jasma Balasangameshwara, Associate Professor,

Department of Computer Science and Engineering, Atria Institute of Technology,
Bangalore, Karnataka, India, Tel: +91 9886 019 686; E-mail: jasma2002@gmail.com

resources and code repository. The connectivity layer defines core
communication and authentication protocols for easy and secure
Resource layer defines protocols for the
publication, discovery, negotiation, monitoring, accounting and

network transactions. Received November 18, 2014; Accepted December 15, 2014; Published

December 25, 2014

payment of sharing operations on individual resources. The collective
layer captures interactions across collection of resources and directory
services that allows monitoring and discovery of virtual organization
resources. The application layer comprises whatever user application
built on top of the above protocols and application programming

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load Balancing
and Fault Tolerance Techniques for Computational Grids. Global J Technol Optim
6: 169. doi: 10.4172/2229-8711.1000169

Copyright: © 2014 Balasangameshwara J. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided

interfaces and operate in the virtual organization environments.

the original author and source are credited.

Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Volume 6 + Issue 1+ 1000169


http://dx.doi.org/10.4172/2229-8711.1000169

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load Balancing and Fault Tolerance Techniques for Computational Grids. Global

J Technol Optim 6: 169. doi: 10.4172/2229-8711.1000169

Page 2 of 5

scheduling decisions involving different types of resources over
multiple administrative domains.

A job is defined as a program that requires a resource. The term
resource is an hardware or software component that can be scheduled
[3]. Scheduling is computationally hard; it has been shown that the
problem of finding the optimum scheduling in heterogeneous systems
is NP-hard [3].

Developments in scheduling research reflect movements from
isolated multi-host scenarios to large scale infrastructures. These
approaches have brought about a change from local to global scheduling
[1]. Figure 2 highlights the grid computing system model.

Grid scheduling characteristics

« Dynamic structure of computational grid: The resources in a
grid can join or leave the Grid in an unpredictable way.

o Resource heterogeneity: Computing resources very disparate
in their computing power, ranging from laptops, desktops,
clusters, supercomputers and even small computational
devices.

o Job heterogeneity: Jobs arriving at a grid are diverse and
heterogeneous in terms of their memory, network and
computational needs.

o Network heterogeneity: Grid resources are connected through
the Internet using different interconnection networks.

o Local schedulers: Grids are constructed by the contribution
of the computational resources by institutions, universities,
enterprises and individuals.

o Local resource policies: It is because of the different ownership
of the resources that one cannot assume full control over the
grid resources.

o Job-resource requirements: Grid schedulers cannot assume
full availability and compatibility of resources while scheduling
jobs.

o Large grids: Efficient resource management and the use
of different types of schedulers are required to achieve the
scalability for large-scale grids and a large number of jobs.

o Security: A job has security requirements and on the other
hand, the resources have their own security requirements.

Figure 2: Grid Computing System Model.

Reference Job Scheduling | Load Balancing @ Fault Tolerance
[2] Yes No No
[3] Yes No No
[6] Yes No No
7 Yes Yes No
[8] Yes Yes No
[9] Yes Yes No
[12] Yes No Yes
[14] Yes No Yes
[15] Yes No Yes

Table 1: Fault Tolerant Scheduling and Load Balancing Summary and
Comparison.

Load balancing

Grids functionally unite worldwide scattered computers for creating
a universal source of computing power and information. A key trait of
grids is that the resources are shared among numerous applications
and the quantity of resources available to any given application highly
fluctuates over time [4].

Therefore, load balancing is a technique to augment resources,
utilizing concurrency, exploiting throughput improvisation and cutting
the response time through an appropriate distribution of application.
Using multiple components with load balancing instead of a single
component may increase the reliability through redundancy [5].

The importance of the load balancing is as follows:

. An unforeseen peak load can be routed to the relatively
unoccupied grid system.

. If the grid is fully utilized, then the lowest priority job
currently being performed can be either temporarily suspended
or cancelled and performed later so as to make room for the higher
priority jobs.

Often, grid computing is regarded as a successor of the distributed
and parallel computing. Nevertheless the grid computing and
distributed computing environment (DCE) are elementarily different.
A DCE is predictable: The availability of resources is based on the fact
that the reservation and processing speeds are static and known in
advance.

A grid environment, nonetheless, is greatly unpredictable as the
resources have dissimilar and unknown processing speeds and they can
be added or removed at any time. As a result, the dynamic nature of the
grid makes load balancing a challenge (Table 1).

Load balancing bharacteristics

o Optimum resource utilization: A load balancing algorithm
should optimize the utilization of the resources by optimizing the time
or cost related to these resources.

o Fairness: A load balancing algorithm is said to be fair, meaning
that the difference between the heaviest loaded computing resource and
the lightest loaded computing resource in the network is minimized.

o Elasticity: As the topology of the network or grid goes on
changing, the algorithm should be flexible enough to adhere to the
changes.

Load balancing policies: The three policies that govern the
action of a load balancing algorithm when a load imbalance
is detected deal with information, transfer, location and

Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Volume 6 « Issue 1+ 1000169


http://dx.doi.org/10.4172/2229-8711.1000169

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load Balancing and Fault Tolerance Techniques for Computational Grids. Global

J Technol Optim 6: 169. doi: 10.4172/2229-8711.1000169

Page 3 of 5

selection. The information policy is responsible for keeping
up-to-date load information about each resource in the system [9].

The transfer policy deals with the dynamic aspects of a system. It
uses the resources’ load information to decide when a resource becomes
eligible to act as a sender.

Location policy selects the partner resources for a job transfer
transaction. If the resource is an eligible sender, the location policy seeks
out a receiver resource to receive the jobs. If the resource is an eligible
receiver, the location policy looks for an eligible sender resource. Once
a resource becomes an eligible sender or receiver, a selection policy is
used to pick up the queued jobs to be transferred.

A stable symmetrically initiated adaptive algorithm uses the
information gathered during polling to classify the resources as
overloaded, under-loaded or OK (resources having manageable load).
These actions impose a small and constant overhead, irrespective of the
number of resources in the system [10-12].

Selection policy uses several criteria to evaluate the queued jobs. Its
goal is to select a job that reduces the local load, incurs as little cost as
possible in the transfer and has good affinity to the resource to which
it is transferred.

A load balancing algorithm in which a computing resource
exchanges information and transfers jobs to its physical and/or logical
neighbours is called “neighbour-based” load balancing method.
The load balancing algorithms in which the computing nodes are
partitioned into clusters based on the network transfer delay are called
“cluster-based” load balancing methods.

Fault tolerance

Fault tolerance is a vital property for large-scale computing
grids. To achieve high level of dependability and availability, the grid
infrastructure should be fault-tolerant. As the failure of resources affect
the job execution fatally, fault tolerant service is crucial to fulfill the
QoS requirements. Also transient faults are tough to identify as they do
not result in a failure rather a job state modification leading to incorrect
output. The resource failures can either be processor or link failures.

o Active replication

This technique is based on the space redundancy i.e. multiple
copies of each job are mapped on different processors and run in
parallel to tolerate a fixed number of failures. With such a technique,
no fault detection mechanism is required [13].

« Passive replication

The main idea of this technique is that a backup copy of a job is
activated only if a fault occurs while executing its primary copy. Passive
replication scheme does not require fault diagnosis and it guarantees to
recover all failed jobs. In such a scheme, only two copies of the job are
scheduled on different processors [14].

Two techniques can be applied while scheduling primary and
backup copies of each job [15].

(1) Backup overloading consists of scheduling backups for multiple
primary jobs during the same time slot in order to efficiently utilize the
available processor time; and

(2) De-allocation of the resources reserved for the backup jobs
when the corresponding primaries are completed successfully.

Related Work

We now describe early work in grid computing related to
scheduling, load balancing and fault tolerance that we believe have
contributed significantly to these areas.

Grid scheduling techniques

Computational grids offer the potential for applications to
aggregate massive bandwidth, computational power, memory and
other resources during a single execution.

Katia Leal et al. [2] presents a decentralized model for scheduling
independent jobs in Federated Grids.

Federated grids are characterized by allowing resource sharing
among several grid infrastructures of different types. Thus, it supports
the interconnection of Enterprise grid, Partner and Utility grids to
increase the total number of participating grids [2]. Katia Leal’s model
consists of meta-schedulers, where each meta-scheduler implements a
mapping strategy in order to improve the job make-span and response
time. Their approach acts as an alternative to centralized, application-
centric and ad-hoc solutions. Katia Leal strategy is independent of the
following:

o Processor speed
o Joblength
o Specialized sensors

The APPLeS (Application Level Scheduling) [3] technique
provides a procedure, application software and software environments
for adaptively scheduling and deploying applications in heterogeneous
multi-user grid environments. APPLeS integrate the static and dynamic
resource information, performance prediction, application-specific
information and scheduling techniques that adjust to the application
execution on the fly. All APPLeS enabled applications are scheduled
adaptively and share a common architecture. Each application is fitted
with a customized scheduling agent that screens the available resource
performance and dynamically produces a schedule for the application.
Fundamental to the APPLeS approach is its ability to produce schedule
that not only considers predicted expected resource performance but
also the variation in that performance.

Unfortunately, the APPLeS have been developed for one
application or for a specific set of applications and the designs cannot
be easily re-targeted to other applications [2]. Specifically, application
related components are embedded in the scheduling software itself.
Given such a design, it can be tough to decide which modules need
to be replaced to incorporate the requirements of the new application.

Nikolaos et al. [4] proposed three fair scheduling algorithms for
the grid environment. In the SFTO (Simple Fair Task Order) policy,
the jobs are arranged in the increasing order of their non-adjusted fair
completion times. The non-adjusted fair completion times is obtained
by the non-adjusted fair computational rates of the jobs by applying a
max-min fair sharing algorithm. The AFTO (Adjusted Fair Task Order)
scheme is an improved version of SFTO policy where the fair rates
are adjusted dynamically each time the jobs become either active or
inactive leading to the better exploitation of the processing capacities.
In both the schemes, the processor to which the jobs are assigned is
found based on the earliest completion time policy with the processor
capacity gap taken into account. In the third scheduling scheme called
MMES (Max-Min Fair Scheduling) policy, the selection of a fair task
queuing order and the selection of the processor assignment are

Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Volume 6 « Issue 1+ 1000169


http://dx.doi.org/10.4172/2229-8711.1000169

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load Balancing and Fault Tolerance Techniques for Computational Grids. Global

J Technol Optim 6: 169. doi: 10.4172/2229-8711.1000169

Page 4 of 5

addressed simultaneously. The MMEFS policy allocates the jobs to the
available processor such that the actual job rate after the scheduling
is close to that of the SFTO and AFTO as obtained by the max-min
fair scheduling schemes. SFTO, AFTO and MMFS are designed for
a multiprocessor computing environment. MMFS requires priori
knowledge of the job workloads.

Sivakumar Viswanathan et al. [5] developed resource-aware
dynamic incremental scheduling (RADIS) strategies for large-scale
computational cluster systems. The strategies were designed to
specifically take into account large volume of computationally intensive
arbitrarily divisible loads with dynamic arrival rates, memory at the
destination nodes for holding and processing of loads which varies
over time and the load deadline requirements. An efficient “pull-based”
scheduling strategy with admission control policy was integrated with
RADIS to ensure that the admitted loads are processed within their
deadlines. RADIS algorithm used divisible load theory (DLT) for
efficiently handling large load volumes. In RADIS, the number of
destination computing nodes that participate in processing varies over
time. The limitations of RADIS are that it is explicitly designed for
computing nodes with in a cluster. Hence, RADIS does not take into
account the inter-cluster communication delay and RADIS performs a
single-point admissibility test.

Young Choon Lee et al. [6] proposed a multiple queues with
duplication (MQD) algorithm for bag of tasks applications for grid
environments. In MQD approach, the scheduling decisions are made by
indirectly taking into account the recent workload pattern of nodes and
by using job duplication strategy. The jobs and nodes are sort in non-
increasing order of their workload and initial deliverable processing
speed. The initial deliverable processing speed of a node is defined as the
node’s available processing power during its initial scheduling process.
In the initial scheduling process, reliable performance information
of nodes compared to their initial deliverable processing speed is
gathered by running a job on each node. On completion of the job,
the performance ranking of the node on which the job is completed
is computed. The performance of a computing node is quantified by
dividing the workload of the last job the node completed by the amount
of time taken for the job. The performance ranking decides to which
node the job is assigned to. The adoption of job replication leads to
better schedules and makes the scheduling decisions more resilient
against resource failures. A disadvantage of MQD is that it assumed
that the amount of computation associated with each job is fixed and
cannot be changed.

Load balancing approaches

Jie Li et al. [7] proposed solutions to load balancing problems for a
set of multiclass jobs for distributed and parallel computer systems. They
constructed a general model which consisted of heterogeneous nodes
which are interconnected by a generally configured interconnection
network wherein there are several classes of jobs, each of which has its
distinct delay function at each node and each communication link. This
model was used to formulate the multiclass job load balancing problem
as a nonlinear optimization problem where the objective is to minimize
the mean response time of the job. The model assumes that the node
processing delay and ink communication delay are known in advance.
The load balancing approach considered by Jie Li is static and does not
depend on the current state of the nodes.

Riky Subrata et al. [8] proposed a game-theoretic approach to
load balancing for computational grids. The technique combined the
inherent efficiency of centralized approach and the fault-tolerant nature

of the decentralized approach. The method takes into consideration the
changes in the system states during runtime. Also, the algorithm does
not assume any particular distribution for the service times of the jobs.
Rather, it only requires the first moment and the second moment of the
service time as the input. However, the co-operative games are harder
to achieve in a grid environment because of the need for cooperation
and control between the players.

The article [9] introduced a behavioral model for parallel
applications with great requirements for network, processing power
and disk I/O resources. The behavioral model was tested on non-
dedicated clusters where application resource demands are not
known in advance. The model also addressed the issue of improving
the bandwidth of the cluster networks at the software level thereby
eliminating the need for the additional hardware.

Menglan Hu et al. [10] proposed requirement-aware strategies
with arbitrary processor release times for scheduling multiple divisible
loads. The strategies addressed two cases namely a case where the
processors’ release times are predefined and where the release times
are unknown until the processors are released. Their technique also
captured the job’s processing requirements. Thus each job could only be
processed by certain computing nodes. However they did not perform
simultaneous processor communications which is very important for
grid computing platform in order to achieve higher throughput.

Fault tolerance methods

An enormous amount of research efforts have been dedicated to
fault tolerance in the scope of grid environments.

Checkpointing: Katsaros et al. [11] proposed a performance and
effectiveness trade-off for check pointing in fault-tolerant distributed
systems. The approach considered dynamic check pointing interval
reduction if it leads to computational gains. This was computed as
the sum of differences between the means for fault-affected and fault-
unaffected job response times.

Li et al. [12] proposed a strategy for using adaptive fault tolerance
in order to improve the application robustness on a TeraGrid. The
strategy combined adaptive check pointing with proactive migration.
It optimized the application execution time by considering the failure
impact and the prevention costs. It took into account three types of
actions namely skip checkpoint, take checkpoint and migrate and
the appropriate action was selected based on the predicted failure
frequency. Hence, the performance of this strategy depends on the
quality of this prediction.

Replication: In passive replication scheme, the fault tolerant
mechanisms are embedded within the algorithms. Passive replication
scheme was first studied in [13] where one computing node was
selected as the primary and all other computing nodes as backups.
If the primary computing node fails, then a failover occurs and the
backup computing node takes over.

Qin Zheng et al. [14] proposed fault tolerant scheduling strategies
for independent, dependent and hybrid jobs with low replication
costs using primary-backup approach for computational grids. They
analyzed the impact of precedence constraints on scheduling and
overloading of backups of dependent jobs and showed that this it
limits the schedulability and overloading efficiency significantly. The
strategies for independent and dependent jobs do not need sampling as
required by traditional backup approaches.

Combined approaches: In [15], a scalable asynchronous low

Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Volume 6 « Issue 1+ 1000169


http://dx.doi.org/10.4172/2229-8711.1000169

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load Balancing and Fault Tolerance Techniques for Computational Grids. Global

J Technol Optim 6: 169. doi: 10.4172/2229-8711.1000169

Page 5 of 5

overhead check pointing and replication based fault tolerance technique
for MPI applications were proposed. This technique eliminated the
need for central or network storage. The algorithm also demonstrated
that effective check pointing could be achieved using the LAM/MPI
implementations.

Discussions and Future Research Directions

We have presented a survey on grid scheduling, load balancing
and fault tolerance for grid computing systems. We have focused
on the core algorithms used in each of these individual areas, their
advantages and disadvantages. We have also identified the future work
required in each of these areas and have indicated that considering
these areas collective will improve these techniques than considering
them individually as shown in Table 1.

References

1. Foster, lan, Zhao Y, Raicu |, Lu S (2008) Cloud computing and grid computing
360-degree compared, In Grid Computing Environments Workshop, GCE’'08
1-10.

2. Leal K, Huedo E, Ignacia M, Llorente, (2009) A Decentralized Model for
Scheduling Independent Tasks in Federated Grids, Future Generation
Computer System, 25: 840-852.

3. Berman, Francine, Wolski R, Casanova H, Cirne W, et al. (2003) Adaptive
computing on the grid using AppLeS, IEEE Transactions on Parallel and
Distributed Systems 14: 369-382.

4. Nikolaos D, Doulamis, Anastasios D, Doulamis, Emmanouel A, et al. (2007)
Fair Scheduling Algorithms in Grids, IEEE Transactions on Parallel and
Distributed Systems 18(11).

5. Viswanathan, Sivakumar, Veeravalli B, Thomas G, Robertazzi (2007) Resource-
Aware Distributed Scheduling Strategies for Large-Scale Computational

Citation: Balasangameshwara J (2014) Survay on Job Scheduling, Load
Balancing and Fault Tolerance Techniques for Computational Grids. Global J
Technol Optim 6: 169. doi: 10.4172/2229-8711.1000169

Cluster/Grid systems, Parallel and Distributed Systems, IEEE Transactions on
Parallel & Distributed Systems 18(10): 1450-1461.

6. Lee, Choon Y, Albert Y, Zomaya (2007) Practical scheduling of bag-of-tasks

applications on grids with dynamic resilience, Computers, IEEE Transactions
on 56(6): 815-825.

7. Li J, Kameda H (1998) Load Balancing Problems for Multiclass Jobs in

Distributed/Parallel Computer Systems, IEEE Transactions Computers 47(3):
322-332.

8. Subrata, Riky, Albert Y, Zomaya, Landfeldt B (2008) Game-theoretic approach

for load balancing in computational grids, Parallel and Distributed Systems,
IEEE Transactions on Computers 19(1): 66-76.

9. Qin X, Jiang H, Manzanares A, Ruan X, Yin S (2010) Communication Aware

Load Balancing for Parallel Applications on Clusters, IEEE Transactions on
Computers 59(1): 42-52.

10. Menglan HU, Bharadwaj Veeravalli (2011) Requirement-Aware Strategies with
Arbitrary Processor Release Times for Scheduling Multiple Divisible Loads,
IEEE Transactions on Parallel and Distributed Systems 22(10): 1697-1704.

11. Katsaros P, Angelis L, Lazos C (2007) Performance and Effectiveness Trade-
Off for Checkpointing in Fault-Tolerant Distributed Systems, Concurrency and
Computation: Practice and Experience 19(1):37-63.

12.Li Y, Lan Z (2007) Using Adaptive Fault Tolerance to Improve Application
Robustness on the TeraGrid, Proc. TeraGrid Conf 1-5.

13. Budhiraja N, Marzulla K, Schneider FB, Toueg S (1992) Primary Backup
Protocols: Lower Bounds and Optimal Implementations, Proc. Third IFIP Conf.
Dependable Computing for Critical Applications (DCCA).

14.Zheng Q, Veeravalli B, Tham CK, (2009) On the Design of Fault-Tolerant
Scheduling Strategies Using Primary-Backup Approach for Computational
Grids with Low Replication Costs, IEEE Transactions on Computers 58(3):380-
393.

15. Walters JP, Chaudhary V (2009) Replication-Based Fault Tolerance for MPI
Applications, IEEE Transcations on Parallel and Distributed Systems 20(7):
997-1010.

Submit your next manuscript and get advantages of OMICS
Group submissions
Unique features:

User friendly/feasible website-translation of your paper to 50 world's leading languages
Audio Version of published paper
Digital articles to share and explore

Special features:

400 Open Access Journals
30,000 editorial team
21 days rapid review process
Quality and quick editorial, review and publication processing
* Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
Sharing Option: Social Networking Enabled
Authors, Reviewers and Editors rewarded with online Scientific Credits
Better discount for your subsequent articles

Submit your manuscript at: http://www.editorialmanager.com/biochem

Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Volume 6 « Issue 1+ 1000169


http://dx.doi.org/10.4172/2229-8711.1000169
http://www.computer.org/csdl/trans/td/2007/10/l1450.pdf
http://www.computer.org/csdl/trans/td/2007/10/l1450.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4167791&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4167791
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4167791&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4167791
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4167791&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4167791
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=660168&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F12%2F14433%2F00660168.pdf%3Farnumber%3D660168
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=660168&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F12%2F14433%2F00660168.pdf%3Farnumber%3D660168
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=660168&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F12%2F14433%2F00660168.pdf%3Farnumber%3D660168
http://www.computer.org/csdl/trans/td/2008/01/ttd2008010066-abs.html
http://www.computer.org/csdl/trans/td/2008/01/ttd2008010066-abs.html
http://www.computer.org/csdl/trans/td/2008/01/ttd2008010066-abs.html
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1051&context=csearticles
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1051&context=csearticles
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1051&context=csearticles
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5703071&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5703071
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5703071&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5703071
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5703071&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5703071
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1059/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1059/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1059/abstract
http://www.cs.iit.edu/~zlan/publications/tg-ftpro-final.pdf
http://www.cs.iit.edu/~zlan/publications/tg-ftpro-final.pdf
http://ecommons.library.cornell.edu/handle/1813/7105
http://ecommons.library.cornell.edu/handle/1813/7105
http://ecommons.library.cornell.edu/handle/1813/7105
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626949&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F4766371%2F04626949.pdf%3Farnumber%3D4626949
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626949&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F4766371%2F04626949.pdf%3Farnumber%3D4626949
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626949&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F4766371%2F04626949.pdf%3Farnumber%3D4626949
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626949&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F4766371%2F04626949.pdf%3Farnumber%3D4626949
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4633353&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4633353
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4633353&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4633353
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4633353&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4633353
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X09000211
http://www.sciencedirect.com/science/article/pii/S0167739X09000211
http://www.sciencedirect.com/science/article/pii/S0167739X09000211
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1195409&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F26889%2F01195409.pdf%3Farnumber%3D1195409
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1195409&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F26889%2F01195409.pdf%3Farnumber%3D1195409
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1195409&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F26889%2F01195409.pdf%3Farnumber%3D1195409
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4339205&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F4339191%2F04339205.pdf%3Farnumber%3D4339205
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4339205&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F4339191%2F04339205.pdf%3Farnumber%3D4339205
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4339205&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F4339191%2F04339205.pdf%3Farnumber%3D4339205
http://www.computer.org/csdl/trans/td/2007/10/l1450.pdf
http://www.computer.org/csdl/trans/td/2007/10/l1450.pdf
http://dx.doi.org/10.4172/2229-8711.1000169

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Background 
	Load balancing 
	Fault tolerance 

	Related Work 
	Grid scheduling techniques 
	Load balancing approaches 
	Fault tolerance methods 

	Discussions and Future Research Directions 
	Figure 1
	Figure 2
	Table 1
	References 

